

ECON 410: Recitation #3 — Answer Key

Jiabing Liu

January 30, 2026

1. Classify the following utility functions by the shape of their indifference curves.

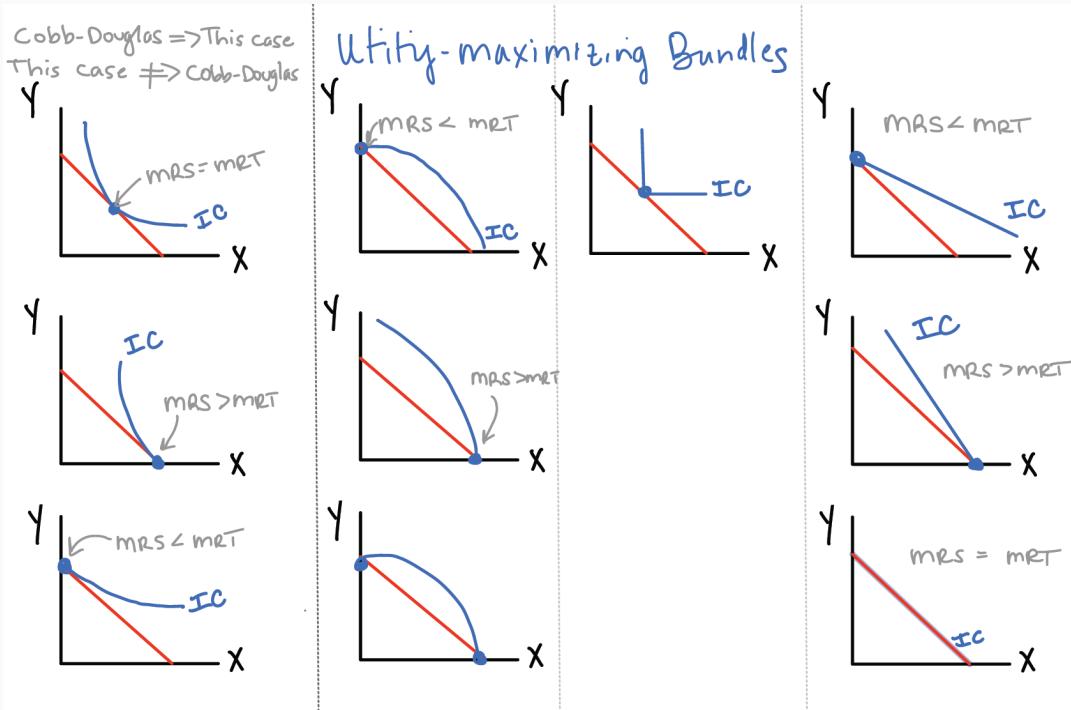
Convex indifference curves:

$U=F^{1/2}C^{1/2}$, $U=B^{1/2}C^{2/3}$, $U=X^2Y^2$, $U=F^{1/3}C^{1/3}$,
 $U=X^aY^b$ ($a > 1, b > 1$), $U=\frac{3}{2}F^{1/10}C^{1/3}$, $U=X^{1/3}Y^{2/3}$,
 $U=FC$, $U=\frac{4}{5}X^{1/2}Y^{2/3}$, $U=F^{0.25}C^{0.75}$,
 $U=\ln X + \ln Y$, $U=(X^{1/2} + Y^{1/2})^2$, $U=(X^3 + Y^3)^{1/3}$.

Concave indifference curves:

$U=X+Y^2$, $U=X^2+Y^2$, $U=X^2-Y^{1/2}$, $U=4XY+X$.

Perfect complements:


$U=\min(2B, 5T)$, $U=\min(3X, 5Y)$, $U=\min(B, 2T)$, $U=\min(4T, H)$.

Perfect substitutes:

$U=2S+3A$, $U=10S+3M$, $U=X+3Y$, $U=5H+S$.

2. For each type of preference, illustrate how indifference curves intersect a budget constraint and identify the optimal bundle.

Illustration of utility-maximizing bundles under different preference types.

Interpretation.

- **Convex indifference curves:** An interior solution occurs when the budget line is tangent to an indifference curve ($MRS = MRT$). Corner solutions arise when the tangency would lie outside the feasible set.
- **Concave indifference curves:** The optimum is always a corner solution.
- **Perfect complements:** The optimum occurs at the kink of the indifference curve.
- **Perfect substitutes:** The optimum is a corner solution unless the indifference curve is parallel to the budget line, in which case multiple optima exist.

3. Four preference exercises.

(1) Sarah consumes waffles (W) and syrup (S). She requires exactly 4 teaspoons of syrup per waffle. Prices are $p_W = 1$, $p_S = 0.25$, and income is 34.

Solution. Preferences are perfect complements:

$$U(W, S) = \min(W, S/4).$$

Optimal consumption satisfies $S = 4W$. Budget:

$$W + 0.25S = 34 \Rightarrow 2W = 34.$$

$$W^* = 17, \quad S^* = 68.$$

(2) Conrad consumes coffee (C) and sugar (S). He needs 2 teaspoons of sugar per 1/3 cup of coffee. Prices are $p_C = 1$, $p_S = 0.25$, income 20.

Solution. This implies $S = 6C$:

$$U(C, S) = \min(C, S/6).$$

Budget:

$$C + 0.25S = 20 \Rightarrow 2.5C = 20.$$

$$C^* = 8, \quad S^* = 48.$$

(3) Matthew consumes sour cream (S) and buttermilk (B). He is willing to trade 1 cup of sour cream for 3/4 cup of buttermilk. Prices are $p_S = 0.5$, $p_B = 1$, income 15.

Solution. Perfect substitutes:

$$U(S, B) = \frac{3}{4}S + B.$$

Bang-per-buck:

$$\frac{MU_S}{p_S} = 1.5 > \frac{MU_B}{p_B} = 1.$$

$$S^* = 30, \quad B^* = 0.$$

(4) Grace consumes coffee (C) and tea (T). She is willing to trade 2 cups of coffee for 5 cups of tea. Prices are $p_C = 4$, $p_T = 1$, income 12.

Solution. Perfect substitutes:

$$U(C, T) = 5C + 2T.$$

Bang-per-buck:

$$\frac{MU_T}{p_T} = 2 > \frac{MU_C}{p_C} = 1.25.$$

$$T^* = 12, \quad C^* = 0.$$