

ECON 410: Recitation #1 — Solutions

Jiabing Liu

January 9, 2026

1. Simplify the following expression as much as possible:

$$\left(\frac{(1/2)x^{-1/2}y}{(1/3)x^{1/2}y^{1/2}} + y^{1/2} \right)^2.$$

Solution.

$$\begin{aligned} \frac{(1/2)x^{-1/2}y}{(1/3)x^{1/2}y^{1/2}} &= \frac{1/2}{1/3}x^{-1/2-1/2}y^{1-1/2} = \frac{3}{2}x^{-1}y^{1/2} = \frac{3y^{1/2}}{2x}. \\ \Rightarrow \left(\frac{3y^{1/2}}{2x} + y^{1/2} \right)^2 &= \left(y^{1/2} \left(\frac{3}{2x} + 1 \right) \right)^2 = \left(y^{1/2} \cdot \frac{3+2x}{2x} \right)^2 = y \cdot \frac{(3+2x)^2}{4x^2}. \end{aligned}$$

$$\left(\frac{(1/2)x^{-1/2}y}{(1/3)x^{1/2}y^{1/2}} + y^{1/2} \right)^2 = \frac{y(3+2x)^2}{4x^2}$$

2. Use the following expression to solve for x :

$$\frac{2x^{-1/3}y^{1/2}}{4x^{1/3}y^{-1/2}} = \frac{a}{b}.$$

Solution.

$$\frac{2x^{-1/3}y^{1/2}}{4x^{1/3}y^{-1/2}} = \frac{2}{4}x^{-1/3-1/3}y^{1/2-(-1/2)} = \frac{1}{2}x^{-2/3}y = \frac{y}{2x^{2/3}}.$$

So

$$\frac{y}{2x^{2/3}} = \frac{a}{b} \implies by = 2ax^{2/3} \implies x^{2/3} = \frac{by}{2a}.$$

Raise both sides to the power $3/2$:

$$x = \left(\frac{by}{2a} \right)^{3/2}$$

3. Partially differentiate the following function with respect to x and z :

$$f(x, z, q) = \frac{3x}{qz^2} - x^{1/2}q.$$

Solution. (Treat q as a constant.)

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left(\frac{3x}{qz^2} \right) - \frac{\partial}{\partial x} \left(x^{1/2}q \right) = \frac{3}{qz^2} - \frac{1}{2}x^{-1/2}q.$$

$$\frac{\partial f}{\partial z} = \frac{\partial}{\partial z} \left(\frac{3x}{q}z^{-2} \right) = \frac{3x}{q} \cdot (-2)z^{-3} = -\frac{6x}{qz^3}.$$

$$\boxed{\frac{\partial f}{\partial x} = \frac{3}{qz^2} - \frac{q}{2\sqrt{x}}, \quad \frac{\partial f}{\partial z} = -\frac{6x}{qz^3}}$$

4. Partially differentiate the following function with respect to x and y . Then form the ratio $\frac{\partial f/\partial x}{\partial f/\partial y}$ and simplify:

$$f(x, y) = 2x^{4/3}y^{1/3}.$$

Solution.

$$\frac{\partial f}{\partial x} = 2 \cdot \frac{4}{3}x^{4/3-1}y^{1/3} = \frac{8}{3}x^{1/3}y^{1/3}, \quad \frac{\partial f}{\partial y} = 2x^{4/3} \cdot \frac{1}{3}y^{1/3-1} = \frac{2}{3}x^{4/3}y^{-2/3}.$$

Thus,

$$\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}} = \frac{\frac{8}{3}x^{1/3}y^{1/3}}{\frac{2}{3}x^{4/3}y^{-2/3}} = \left(\frac{8}{3} \right) \left(\frac{3}{2} \right) x^{1/3-4/3} y^{1/3-(-2/3)} = 4x^{-1}y = \frac{4y}{x}.$$

$$\boxed{\frac{\partial f/\partial x}{\partial f/\partial y} = \frac{4y}{x}}$$